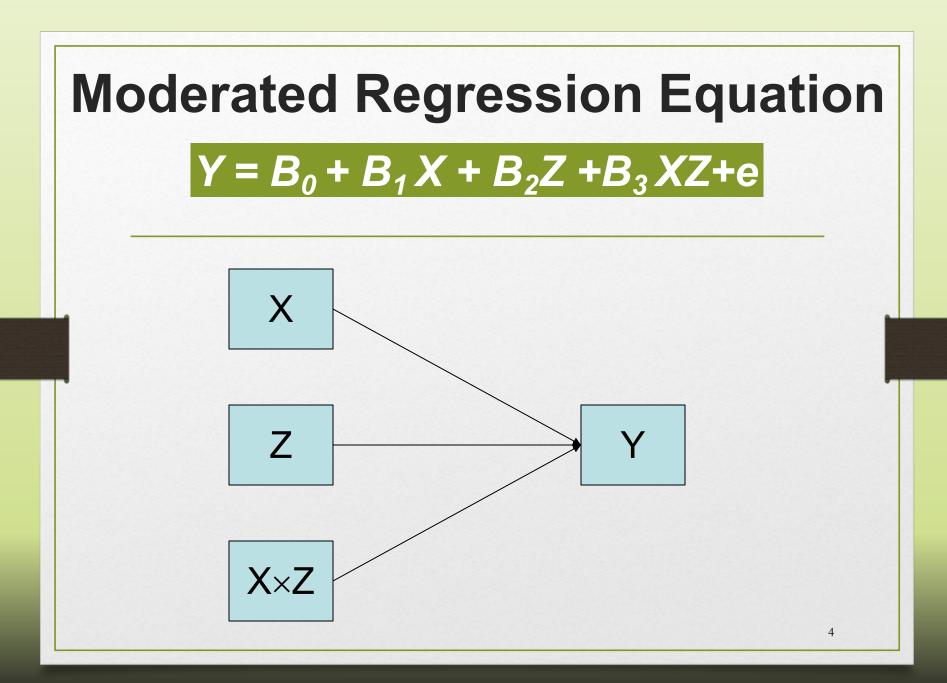
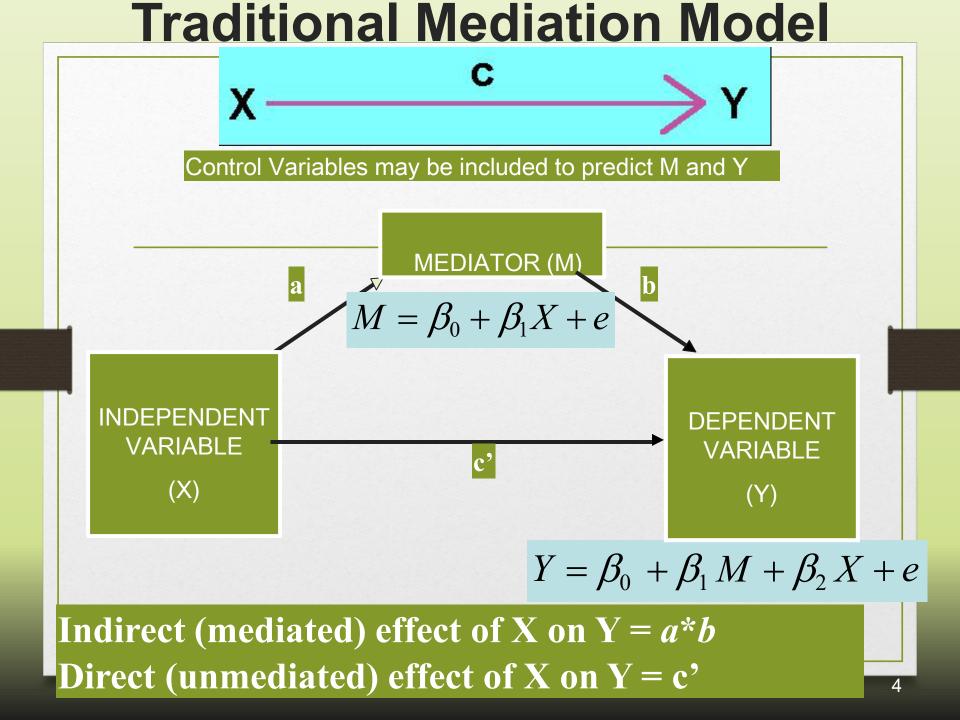
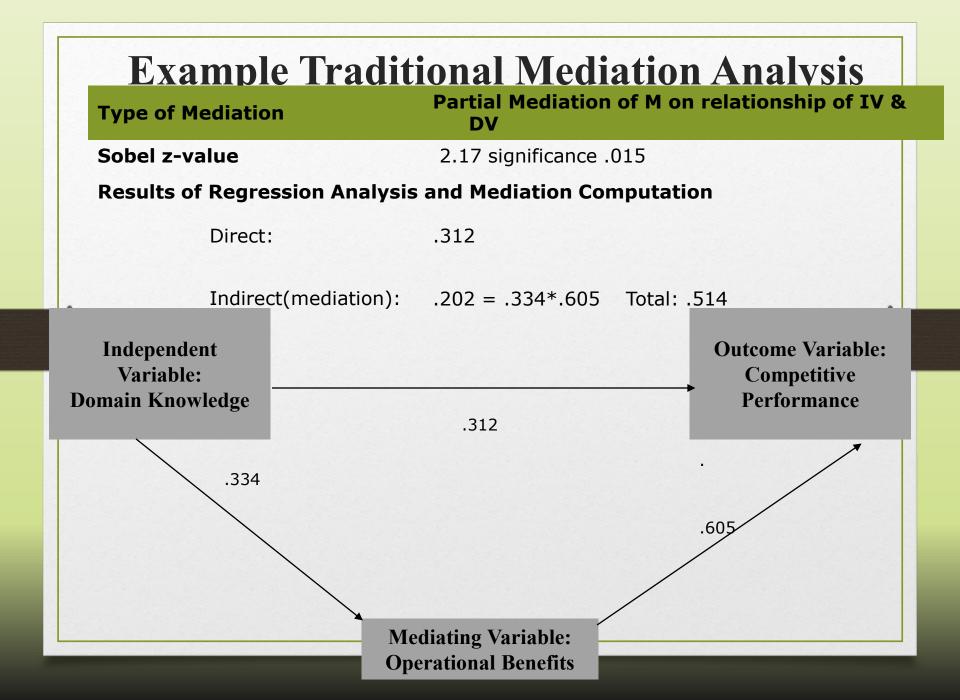

Moderated Mediation or Mediated Moderation


Robert Pavur University of North Texas


Mediation and Moderation

- A *moderator* variable influences the strength of a relationship between two other variables and is associated with interactions of variables.
- A model of the relationship of X and Y is said to be "conditional" on the value of W if W moderates that relationship
 - A *mediator* variable explains the relationship between the two other variables and is associated with a path diagram.
 - <u>Mediation is part of a causal chain of events or process</u>. When the effect of a mediator is in a path model, the strength of the relationship between the independent and dependent variables may decrease.

 Theory and literature support determining variables that are mediators or moderators.
 Note: Causal support with cross-sectional data requires additional justification.

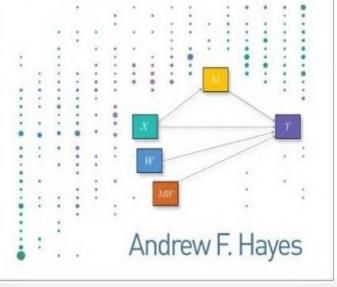


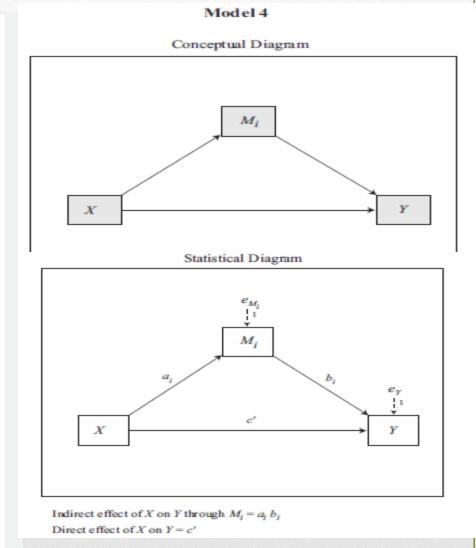
Why Use Bootstrap to test for Significance of Indirect Effect?

- Test for mediation or indirect effect is $H_0: ab = 0$.
- Sobel Z test is called the "normal theory" test and assumes the indirect effect is normally distributed. Several alternative tests exists (Hayes & Scharkow, 2013 for a review).
- The distribution of the indirect effect tends to be skewed, and thus the normal distribution assumption is questionable.
- Bootstrapping is a nonparametric approach that can provide bootstrapped confidence intervals for the indirect effect and usually has more power than the "normal theory" tests when data are highly skewed.

Baron & Kenny (1986) MacKinnon, Hayes, Preacher (2010)

Traditional and Modern Mediation Pioneers


Hayes Provides Process Macros


- Many software packages compute the indirect effects. If it is significant, then mediation is supported. (Whether it is consistent mediation may be another problem.)
- Hayes created Process Macros in 2012 to use
 bootstrapping to test significance of the indirect
 effect in path models using regression analysis.
- His contribution is that he has a template of models that can be selected and indirect effects and their contrasts can be analyzed.
- Template allows multiple mediators and moderators.

Hayes Process Textbook & Templates

SECOND EDITION

Introduction to Mediation, Moderation, and Conditional Process Analysis | A Regression-Based Approach

Mediation, Moderation and Conditional Process Analysis

Online and in-person courses by Andrew F. Hayes in July 2023

Enroll at ccramsessions.com

Take a class from me on the topic of this book.

Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach Third Edition

THIRD EDITION

Introduction to Mediation, Moderation, and Conditional Process Analysis

Introduction to Mediation, Moderation, and Conditional Process Analysis describes the foundation of mediation and moderation analysis as well as their analytical integration in the form of "conditional process analysis", with a focus on PROCESS for SPSS SAS, and R (#processmacro) as the tool for implementing the methods discussed. Available as both an e-book and in print form, it is published by The Guilford Press.

Here are the data files and code used in this third edition of the book. Here is the errata for the third edition.

Andrew F. Hayes, Ph.D.

Home

My C.V.

My Books

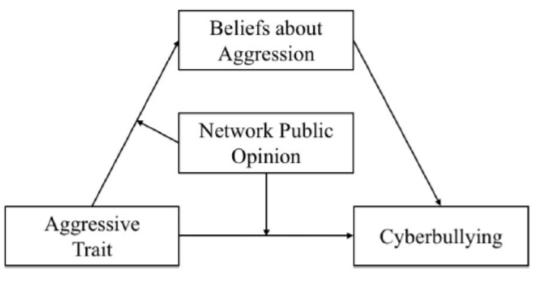
Teaching and Speaking

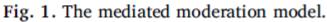
Mechanisms and **Contingencies Lab**

PROCESS macro for SPSS, SAS, and R

SPSS, SAS, and R Macros and Code

Video


Tweets



random sample of size n from samp

Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach Second Edition

Effects of Aggressive **Traits on Cyberbullying**: Mediated moderation or moderated mediation? By Song, Zhu, Liu, Fan, Zhu, and Zhang (2019) **Computers** in Human **Behavior**

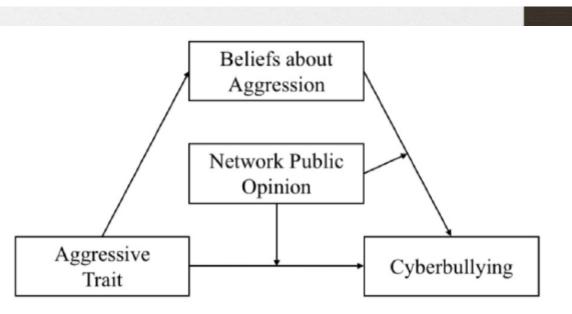
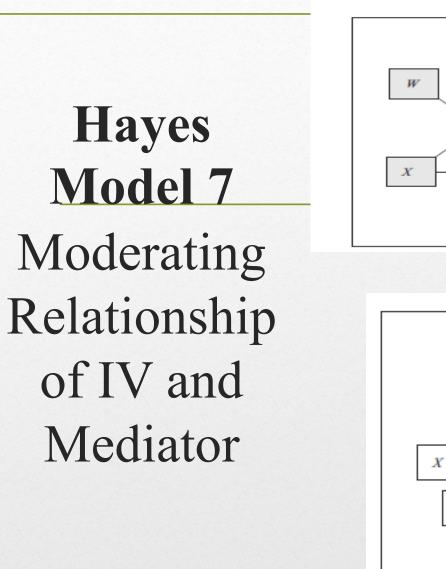
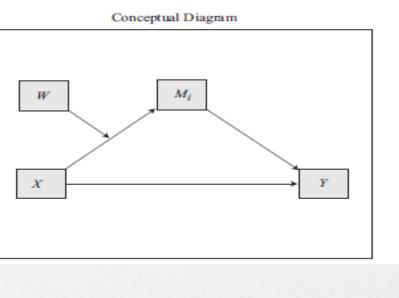
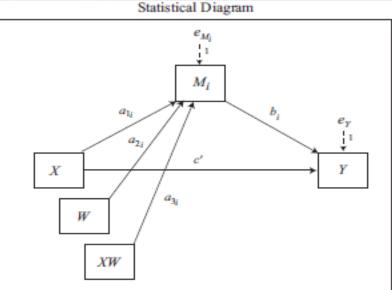
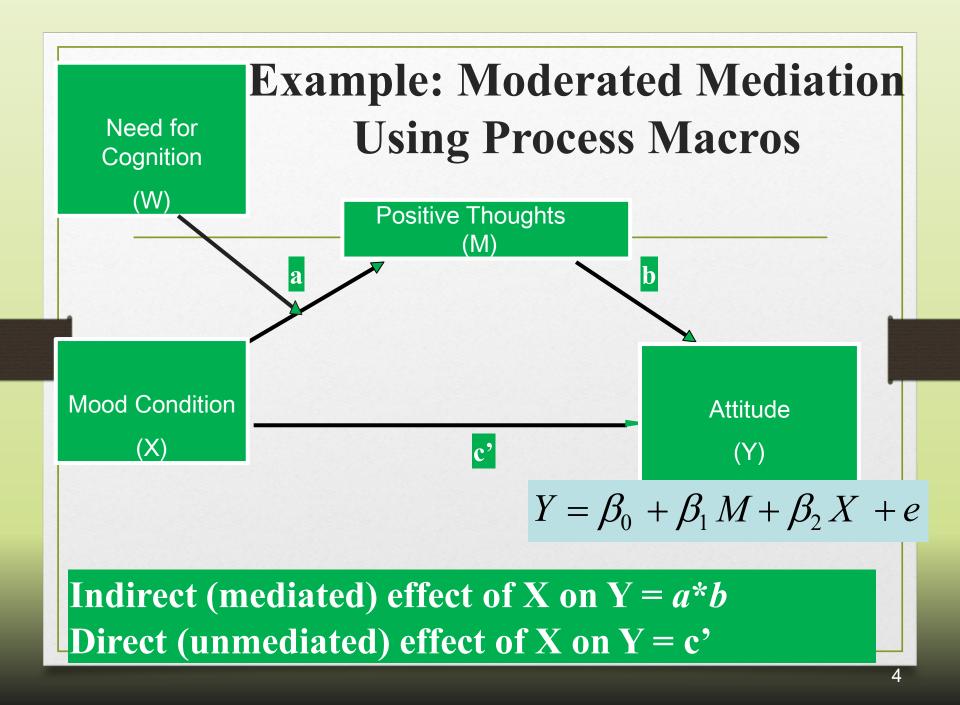





Fig. 2. The moderated mediation model.


Model 7

Conditional indirect effect of X on Y through $M_i = (a_{1i} + a_{3i}W)b_i$ Direct effect of X on Y = c'

	E	xa]	n	nple	of	MO	DM	ED	Data	1
ta *I	MODMED) (1).sav [Dat	taSet	t1] - IBM SPSS S	Statistics Data E	ditor				
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u>	<u>)</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> tili	ities E <u>x</u> ten	sions <u>W</u> indo	w <u>H</u> elp	
										Q
16 :										<u> </u>
		🔗 OBS		\delta MOOD	NFC 🔗	MOODNF C	🖋 POS	POSNFC	🖋 ATT	var
	1		1	-1	3.07579	-3.07579	6.25	19.2238	18.5455	
	2		2	-1	2.59489	-2.59489	-5.07	-13.1485	-16.9684	
	3		3	-1	-1.00952	1.00952	.93	9435	-5.9578	
1	4		4	-1	43824	.43824	2.87	-1.2563	-7.2256	
	5		5	-1	.21788	21788	-16.56	-3.6081	-26.7000	
(6		6	-1	.43842	43842	-13.14	-5.7593	-24.1241	
	7		7	-1	-1.09646	1.09646	95	1.0451	-28.0378	
(8		8	-1	57737	.57737	-13.77	7.9523	-9.4845	
	9		9	-1	1.75978	-1.75978	-5.82	-10.2359	10.8746	

Hayes SPSS Add-ins

V* 🖶	NODMEI	D (1).sav [l	DataSet	1] - IBM SPSS S	statistics Data E	ditor						
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>I</u>	<u>J</u> tilities	E <u>x</u> tension	is <u>W</u> indow	<u>H</u> elp		
							μ		sion <u>H</u> ub Local Extens	on Bundle		λ
5 :		🖋 OE	BS	💑 Mood	🖋 NFC	MOODN C	IF 🔌 F	<mark>≓</mark> C <u>u</u> stor U <u>t</u> ilitie		ler for Extensions	>	<u>C</u> reate Extension Bundle
	1		1	-1	3.07579	-3.075	79	6.25	19.2238	18.5455		Edit Extension Bundles
2	2		2	-1	2.59489	-2.5948	39	-5.07	-13.1485	-16.9684		
3	3		3	-1	-1.00952	1.009	52	.93	9435	-5.9578		E Custom Dialog Builder (Compatibility mode)
4	1		4	-1	43824	.4382		2.87	-1.2563	-7.2256		Install Custom <u>D</u> ialog (Compatibility mode)
		•		ok <u>i</u> n: <mark>R</mark> N Hayes Dov	ing Moderat ons esentation	led or Med			~		•	×
	L	_		e <u>n</u> ame: es of <u>t</u> ype:	process.sp Compatible					~		Open Cancel Help

Add-in under Regression in SPSS Analyze DropDown

6	6 MO	DD	
		-1	
		-1	
		-1	
		-1	
		-1	
		-1	
		-1	
		-1	
		-1	
		-1	
		-1	_
		-1	
		-1	
		-1	
		1	

Transform

<u>A</u> na	alyze	<u>G</u> raphs	<u>U</u> tilities	Extensions	<u>W</u> indo	ow <u>H</u> elp		
	<u>P</u> ower	Analysis		>			- Q	
	Report	s		>				•
	D <u>e</u> scri	ptive Statis	tics	>		A . —		
	<u>B</u> ayesi	ian Statisti	cs	>	OSNFC	🛷 ATT	var	var
	Ta <u>b</u> les			>	19.2238	18.5455		
	Co <u>m</u> pa	are Means		>	13.1485	-16.9684		
	<u>G</u> enera	al Linear M	odel	>	9435	-5.9578		
	Genera	ali <u>z</u> ed Linea	ar Models	>	-1.2563	-7.2256		
	Mixed	Models		>	-3.6081	-26.7000		
	<u>C</u> orrela			>	-5.7593	-24.1241		
		110			1 0451	-28 0378		
	Regres	ssion		>	Autor	matic Linear Model	ing	
	L <u>og</u> line	ear		>	🚠 Linea	I r		
	Neural	Net <u>w</u> orks		>	Curve	Estimation		
	Classi	fy		>		al Lea <u>s</u> t Squares		
	Dimension Reduction		>					
	Sc <u>a</u> le			>	PRO	CESS v3.5 by And	rew F. Hayes	
		rametric Te	ests	>	👪 Binar	y Logistic		

Specify Model 7 for this Analysis

 \times

PROCESS_v3.5

Variables:			Y variable:	About
Observation [OBS]			Attitude [ATT]	Options
Mood x NFC [MOODNFC]			X variable:	-
Positive thoughts x NFC [POSNFC]		•	🚓 MOOD	Multicategorical
			Mediator(s) M:	Long variable names
			Positive thoughts [POS]	
		\$		
			Covariate(s):	
Model number:		\$		
7	~			
Confidence intervals				
95	~		Moderator variable W:	
Number of bootstrap samples		-	Need for cognition [NFC]	
5000	~		Moderator variable Z:	
Save bootstrap estimates		+		
Bootstrap inference for model coefficients			Do not use PASTE button	

Process Options

PROCESS options

Decimal places in output	
4	
Mean center for construction	of products
No centering	
O All variables that define pro	oducts
O Only continuous variables	that define products
Moderation and conditioning	
Probe interactions	
if p < .10	~
Conditioning values	
I6th, 50th, 84th percenti	les
O -1SD, Mean, +1SD	

 \times

Continue Cancel

	SPSS Output	
Run MA	RIX procedure:	
*****	********* PROCESS Procedure for SPSS Version 3.5.3 *****************	
Doc	Written by Andrew F. Hayes, Ph.D. www.afhayes.com cumentation available in Hayes (2018). www.guilford.com/p/hayes3	
Model Y	: 7 : ATT : MOOD	
	: POS : NFC	
-	100	
Sample Size:	100	

Standard Regression Analysis

POS

Model Summar	У					
R	R-sq	MSE	F	df1	df2	p
.5656	.3200	48.5739	15.0557	3.0000	96.0000	.0000
Model						
	coeff	se	t	р	LLCI	ULCI
constant	.0404	.6971	.0579	.9540	-1.3435	1.4242
MOOD	4.3357	.6971	6.2193	.0000	2.9519	5.7196
NFC	.7672	.5130	1.4956	.1380	2510	1.7854
Int_1	1.2565	.5130	2.4496	.0161	.2383	2.2747
Product term	s key:					
Int_l :	MOOD	х	NFC			
Test(s) of h	-					
R2-ch	ng	F d	lfl d	lf2	р	
X*W .04	25 6.000	5 1.00	96.00	.00	161	

Conditional Effects of X(Mood) at values of W(Need for Cognition)

Focal predict: MOOD (X)

Mod var: NFC (W)

Conditional effects of the focal predictor at values of the moderator(s):

NFC	Effect	se	t	р	LLCI	ULCI
-1.0841	2.9735	.8894	3.3434	.0012	1.2081	4.7389
.0018	4.3380	.6972	6.2225	.0000	2.9542	5.7219
1.4457	6.1523	1.0206	6.0281	.0000	4.1264	8.1782

	Predictors of Attitude							
OUTCOME VARI	ABLE:							
ATT								
Model Summar	:У							
R	R-sq	MSE	F	dfl	df2	p		
.6356	.4039	171.5940	32.8662	2.0000	97.0000	.0000		
Model								
	coeff	se	t	р	LLCI	ULCI		
constant	1.9807	1.3099	1.5121	.1338	6192	4.5806		
MOOD	1.7844	1.5343	1.1631	.2477	-1.2607	4.8295		
POS	1.1571	.1853	6.2450	.0000	.7894	1.5248		

S	U			ect Ef irect F	fect and
	Cond			ITECT F	liects
*****	***** DIREC	I AND INDII	RECT EFFECT:	5 OF X ON Y	******
Direct effect	t of X on Y				
Effect	se	t	р	LLCI	ULCI
1.7844	1.5343	1.1631	.2477	-1.2607	4.8295
Conditional :	indirect effe	ects of X (on Y:		
INDIRECT EFF	ECT:				
MOOD	-> POS	->	ATT		
NFC	Effect	BootSE	BootLLCI	BootULCI	
-1.0841	3.4406	1.2170	1.3189	6.0246	
.0018	5.0195	1.1817	2.9481	7.5305	
1.4457	7.1187	1.6595	4.1985	10.6781	

Conditional Indirect Effects, Contrasts, and Index of Moderated Mediation

Conditional indirect effects of X on Y:

INDIRECT EFFECT:										
D -	-> POS	->	ATT							
NFC	Effect	BootSE	BootLLCI	BootULCI						
-1.0841	3.4406	1.2170	1.3189	6.0246						
.0018	5.0195	1.1817	2.9481	7.5305						
1.4457	7.1187	1.6595	4.1985	10.6781						
Index of moderated mediation:										
Index	K BootSH	E BootLLC	I BootUL	CI						
1.4539	9.6344	4 .347:	1 2.84	62						
Pairwise contrasts between conditional indirect effects (Effectl minus Effect2)										
Effectl	Effect2	Contrast	BootSE	BootLLCI	BootULCI					
5.0195	3.4406	1.5789	.6889	.3769	3.0908					
7.1187	3.4406	3.6781	1.6048	.8781	7.2003					
7.1187	5.0195	2.0992	.9159	.5012	4.1095					
	NFC -1.0841 .0018 1.4457 Index of Index of 1.4539 rwise cont Effect1 5.0195 7.1187	DD -> POS NFC Effect -1.0841 3.4406 .0018 5.0195 1.4457 7.1187 Index of moderated Index BootSP 1.4539 .6344 rwise contrasts betwee Effect1 Effect2 5.0195 3.4406 7.1187 3.4406	DD -> POS -> NFC Effect BootSE - -1.0841 3.4406 1.2170 .0018 5.0195 1.1817 .0018 5.0195 1.1817 1.6595 . Index of moderated mediation: Index BootSE BootLLC: 1.4539 .6344 .3473 .rwise contrasts between condition Effect1 Effect2 Contrast 5.0195 3.4406 1.5789 7.1187 3.6781	NFC Effect BootSE BootLLCI -1.0841 3.4406 1.2170 1.3189 .0018 5.0195 1.1817 2.9481 1.4457 7.1187 1.6595 4.1985 Index of moderated mediation: Index BootSE BootLLCI BootUL 1.4539 .6344 .3471 2.84 rwise contrasts between conditional indir Effect1 Effect2 Contrast BootSE 5.0195 3.4406 1.5789 .6889 7.1187 3.4406 3.6781 1.6048	DD -> POS -> ATT NFC Effect BootSE BootLLCI BootULCI -1.0841 3.4406 1.2170 1.3189 6.0246 .0018 5.0195 1.1817 2.9481 7.5305 1.4457 7.1187 1.6595 4.1985 10.6781 Index of moderated mediation: Index BootSE BootLLCI BootULCI 1.4539 .6344 .3471 2.8462 rwise contrasts between conditional indirect effects Effect1 Effect2 Contrast BootSE BootLLCI 5.0195 3.4406 1.5789 .6889 .3769 7.1187 3.4406 3.6781 1.6048 .8781	ND -> POS -> ATT NFC Effect BootSE BootLLCI BootULCI -1.0841 3.4406 1.2170 1.3189 6.0246 .0018 5.0195 1.1817 2.9481 7.5305 1.4457 7.1187 1.6595 4.1985 10.6781 Index of moderated mediation: Index BootSE BootLLCI BootULCI 1.4539 .6344 .3471 2.8462 rwise contrasts between conditional indirect effects (Effect1 minus Effect1 Effect2 Contrast BootSE BootLLCI 5.0195 3.4406 1.5789 .6889 .3769 3.0908 7.1187 3.4406 3.6781 1.6048 .8781 7.2003				

Moderator value(s) defining Johnson-Neyman significance region(s):

Value % below % above -1.6949 10.0000 90.0000

Conditional effect of focal predictor at values of the moderator:

		-				
NFC	Effect	se	t	р	LLCI	ULCI
-4.8265	-1.7288	2.5683	6731	.5025	-6.8270	3.3693
-4.4314	-1.2324	2.3739	5191	.6049	-5.9446	3.4798
-4.0363	7359	2.1810	3374	.7365	-5.0651	3.5933
-3.6411	2394	1.9900	1203	.9045	-4.1896	3.7107
-3.2460	.2570	1.8016	.1427	.8868	-3.3191	3.8331
-2.8509	.7535	1.6166	.4661	.6422	-2.4554	3.9624
-2.4558	1.2500	1.4364	.8702	.3864	-1.6012	4.1012
-2.0607	1.7464	1.2630	1.3828	.1699	7606	4.2535
-1.6949	2.2061	1.1114	1.9850	.0500	.0000	4.4122
-1.6656	2.2429	1.0997	2.0395	.0441	.0600	4.4258
-1.2705	2.7394	.9517	2.8785	.0049	.8503	4.6285
8753	3.2358	.8271	3.9121	.0002	1.5940	4.8777
4802	3.7323	.7381	5.0566	.0000	2.2672	5.1974
0851	4.2288	.6983	6.0561	.0000	2.8427	5.6148
.3100	4.7253	.7159	6.6004	.0000	3.3042	6.1463
.7051	5.2217	.7872	6.6337	.0000	3.6592	6.7842
1.1002	5.7182	.8994	6.3581	.0000	3.9330	7.5034
1.4953	6.2147	1.0393	5.9794	.0000	4.1516	8.2778
1.8904	6.7111	1.1974	5.6047	.0000	4.3343	9.0880
2.2856	7.2076	1.3673	5.2714	.0000	4.4935	9.9217
2.6807	7.7041	1.5451	4.9861	.0000	4.6370	10.7711
3.0758	8.2005	1.7284	4.7446	.0000	4.7697	11.6314

Johnson-Neyman Option

Links & References

http://www.afhayes.com/introduction-to-mediation-moderation-andconditional-process-analysis.html

http://www.processmacro.org/index.html

Hayes, A. (2013). *Introduction to mediation, moderation, and conditional process analysis.* New York: Guilford Press

- Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: Does method really matter? *Psvchological Science*. 24. 1918-1927
- Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. *Psychological Methods*, 16, 93-115.
- Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Assessing moderated mediation hypotheses: Theory, methods, and prescriptions. *Multivariate Behavioral Research*, 42, 185-227.
- Hayes, A. (2015). An index and test of linear moderated mediation. *Multivariate Behavioral Research,* 50, 1-22.

Thanks for your attendance! Questions? Comments?